ICONBM-2022

Conversion of Biomass to Green Hydrogen: Symbiosis Between Bioenergy and Hydrogen Economy

J. A. Kozinski

Department of Chemical Engineering Lakehead University Thunder Bay Canada

Abstract

Biomass gasification contributes to the growing energy demand thus reducing reliance on fossil fuels and decreasing accumulation of greenhouse gases in the atmosphere. A new technology, in which biomass, considered as a renewable energy source, produces green hydrogen, as a fuel, is described. Willow was used as a model compound for biomass. The biomass-to-H₂ conversion was studied in supercritical water (SCW) using a Diamond Anvil Cell (DAC) at heating rates of 1 and 5 ° C/s and a Continuous Flow Reactor (CFR). The evolution pathway of cellulose and glucose, which are the building blocks of any biomass, was determined (selected experiments were conducted in-situ under a synchrotron environment). In addition, a conversion mechanism, based on a rapid hydrolysis of cellulose to oligomers and glucose, was suggested. Successful gasification of 0.1 M biomass mixture was achieved with an acceptable selectivity for hydrogen (44%). A mixture of H₂, CO₂ and CH₄ gas was also produced. Quantitative analysis of the total organic carbon (TOC) in the residue indicated 67% carbon gasification efficiency at 330° C. Results of this work have led us to propose a continuous process allowing for efficient generation of hydrogen from biomass. Based on the DAC and CFR experiments a new technology, in which a renewable biomass is used to produce hydrogen fuel, was developed. The biomassderived green hydrogen could be used as a feed for fuel cells to generate electricity.